Mechanisms for solvent tolerance in bacteria.

نویسندگان

  • J L Ramos
  • E Duque
  • J J Rodríguez-Herva
  • P Godoy
  • A Haïdour
  • F Reyes
  • A Fernández-Barrero
چکیده

The development of tolerance in Pseudomonas putida DOT-T1 to toluene and related highly toxic compounds involves short- and long-term responses. The short-term response is based on an increase in the rigidity of the cell membrane by rapid transformation of the fatty acid cis-9,10-methylene hexadecanoic acid (C17:cyclopropane) to unsaturated 9-cis-hexadecenoic acid (C16:1,9 cis) and subsequent transformation to the trans isomer. The long-term response involves in addition to the changes in fatty acids, alterations in the level of the phospholipid polar head groups: cardiolipin increases and phosphatidylethanolamine decreases. The two alterations lead to increased cell membrane rigidity and should be regarded as physical mechanisms that prevent solvent penetrance. Biochemical mechanisms that decrease the concentration of toluene in the cell membrane also take place and involve: (i) a solvent exclusion system and (ii) metabolic removal of toluene via oxidation. Mutants unable to carry out cis --> trans isomerization of unsaturated lipids, that exhibit altered cell envelopes because of the lack of the OprL protein, or that are unable to exclude toluene from cell membranes are hypersensitive to toluene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Organic Solvent Tolerance and Increased Antibiotic Resistance Properties in E. coli gyrA Mutants

   Ciprofloxacin is one of the most widely used antibiotics for the treatment of several infections caused by Gram-negative bacteria, like E. coli. Changes in gyrA, encoding GyrA subunit of DNA gyrase, cause the resistance to ciprofloxacin. Some ciprofloxacin resistant gyrA mutants acquired constitutive expression of marRAB operon due to the gaining mutations in marR, a repressor of this operon...

متن کامل

Study of Organic Solvent Tolerance and Increased Antibiotic Resistance Properties in E. coli gyrA Mutants

   Ciprofloxacin is one of the most widely used antibiotics for the treatment of several infections caused by Gram-negative bacteria, like E. coli. Changes in gyrA, encoding GyrA subunit of DNA gyrase, cause the resistance to ciprofloxacin. Some ciprofloxacin resistant gyrA mutants acquired constitutive expression of marRAB operon due to the gaining mutations in marR, a repressor of this operon...

متن کامل

Mechanisms Involved In Organic Solvent Resistance in Gram-Negative Bacteria

The high world interest given to the researches concerning the study of moderately halophilic solvent-tolerant bacteria isolated from marine polluted environments is due to their high biotechnological potential, and also to the perspective of their application in different remediation technologies. Using enrichment procedures, I isolated two moderately halophilic Gram-negative bacterial strains...

متن کامل

Regulation of solvent tolerance in Pseudomonas putida S12 mediated by mobile elements

Organic solvent-tolerant bacteria are outstanding and versatile hosts for the bio-based production of a broad range of generally toxic aromatic compounds. The energetically costly solvent tolerance mechanisms are subject to multiple levels of regulation, involving among other mobile genetic elements. The genome of the solvent-tolerant Pseudomonas putida S12 contains many such mobile elements th...

متن کامل

Characterization of Acetonitrile-Tolerant Marine Bacterium Exiguobacterium sp. SBH81 and Its Tolerance Mechanism

A Gram-positive marine bacterium, Exiguobacterium sp. SBH81, was isolated as a hydrophilic organic-solvent tolerant bacterium, and exhibited high tolerance to various types of toxic hydrophilic organic solvents, including acetonitrile, at relatively high concentrations (up to 6% [v/v]) under the growing conditions. Investigation of its tolerance mechanisms illustrated that it does not rely on s...

متن کامل

Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics.

Microorganisms have mechanisms that enable them to tolerate lethal concentrations of toxic compounds. This feature has been exploited in a wide range of bioprocesses that range from bioremediation applications to production of fine chemicals in two-phase reaction media. The ability to modify the physical properties of cellular membranes has long been put forward as a protection mechanism that e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 7  شماره 

صفحات  -

تاریخ انتشار 1997